LEWICE 2.2 Capabilities and Validation

William B. Wright QSS Group, Inc.

Aug. 22, 2002

Outline

- Background
- Bleed Air Capabilities
- External Review
- Heat Transfer Correlations
- Validation Tasks

LEWICE

Flow Solver

 Use potential panel code to determine flow field about clean surface

Droplet Trajectories

 Calculate water droplet trajectories from some upstream location until impact on the surface or until body is bypassed

Water Collection

 Determine water droplet impact location pattern between impingement limits

Heat Transfer

 Perform quasi-steady analysis of control volume mass and energy balance in time stepping routine

Ice Growth

Density correlations used to convert ice growth mass into volume

Iterate

With new ice shape, iterate entire routine

LEWICE/Thermal

Thermal Ice Protection System Simulation

Approach

- Used LEWICE model for flow field and trajectories
- 2D unsteady heat transfer model

Features

- Composite body structure
- Individual heater sequence with different power to each heater
- Gaps between heaters
- Predicts ice accretion, shedding, melting, and refreezing
- Water runback on surface using the LEWICE model

ANTICE

Thermal Anti-Icing Simulation

Approach

- Flow and trajectory solutions required from other sources
- 2D steady heat transfer model

Features

- Composite body
- Multi-zone electro-thermal heaters with different power densities
- Gaps between heaters
- Hot gas anti-icing system (streamwise gas flow)
- Specified surface heat flux distribution
- Surface water runback and surface wetness factor (rivulet model)
- Partial and full evaporation, and freezing

LEWICE 2.2

- Combines features of LEWICE, LEWICE/Thermal and ANTICE
 - Multi-time step
 - De-icing or Anti-icing
 - Electrothermal or hot air
 - Uses results from other sources
- Added features
 - Optimized heater sequencing
 - Multiple boundary conditions for bleed air analysis

Bleed Air Capabilities

Bleed Air Boundary Conditions

- Convective HTC user-supplied
 - Constant bulk temperature in bleed air (multiple supply locations)
 - Variable bulk temperature in bleed air (user-supplied input location)
- Inner surface heat flux user-supplied
- Inner surface heat flux controlled by temperature
- All should be capable of modeling piccolo tube design
 - Multiple methods provided for user convenience
- Requires separate method to translate design criteria (hole size, spacing, mass flow rate, etc.) into required input

Bleed Air Test Case

- Half-Model Symmetric Engine Inlet
- LEWICE 3D Example Case
- 5 Thermal Runs Obtained on Each 2D Streamline
- Bleed Air Flow Rate Reduced To Obtain Runback for Illustration
- V = 150 kts, LWC = 0.2 g/m³, MVD = 20 μ m, T = 0°F, t = 3 min

Bleed Air Test Case

External Reviews

- Academic Review
 - Software verification
 - Grid sensitivity
 - Time-step sensitivity
- Industry Review
 - Applicability to piccolo tube systems
 - Usability of software
 - Accuracy of results
 - 18%-30% lower than experiment

Review Recommendations

- Change data inputs
 - Inputs should be d, T, P, z_n, c_n rather than htc or q arrays
- Include surface temperature array as input
 - Useful for calibration
- Develop experimental database
- Use a fixed reference point for wrap distance
- Implement a fixed transition point for b.l.
- Fix two program errors "bugs"
 - Dual heat flux b.c.
 - Large anisotropic ratios

Changes Due to Review

- Included all suggested user options
- Fixed program errors
- Added correlations for piccolo heat transfer

$$\overline{Nu} = C * \Pr^{\frac{1}{3}} * \operatorname{Re}^{a} * \left(\frac{z_n}{d}\right)^{b} * \left(\frac{c_n}{d}\right)^{e}$$

- Variation in powers from literature
- C= 0.453, a= 0.691, b= -0.22, e= -0.38 (Tawfek) $6 \le z_n/d \le 58$
- C= 0.251, a= 0.68, b = 0.15, e = -0.38 (Gau & Chung) $2 \le z_n/d \le 8$
- C= 0.394, a= 0.68, b = -0.32, e = -0.38 (Gau & Chung) 8 ≤ z_n/d ≤ 16

$$\overline{Nu} = \text{Re}^{0.76*} \left| \frac{24 - \left| \frac{z_n}{d} - 7.75 \right|}{533 + 44 * \left(\frac{c_n}{d} \right)^{1.394}} \right|$$
 (Goldstein et. al.)

Electrothermal Validation

- Two week entry in 1996
- NACA0012 airfoil
- Electrothermal heater designed by Cox & Co.
- 100+ cases
 - 12 tunnel conditions
 - De-icing and anti-icing runs for each condition

 NACA0012 airfoil, 36" chord Mounted vertically

7 Heaters

• 3 Operative Modes

- Running Wet
- Evaporative
- De-icing
- Data Acquisition
 - Photos
 - Video
 - Standard VCR
 - BetaCam
 - InfraRed
 - 42 Thermocouples
 - 3 per heater location
 - 2 sets of heaters (top & bottom)

Run22 Anti-Icing Case

Electrothermal Validation Tasks

- Coordinate experimental data
- Run cases
- Parametric studies
 - Power variations
 - Material property/thickness variations
 - Grid density (more points/time steps)
- Compare data
 - Percent error
 - Absolute error
 - Comparison plots
- Validation report

Sample Electrothermal Validation (Laminar)

Run 17 Top, Section A: Heater Temperature

Section A: Heater Temperature (Experimental) [°F]

Section A: Heater Temperature (LEWICE) [°F]

Sample Electrothermal Validation (Laminar)

Run 17 Top, Section B: Heater Temperature

Section B: Heater Temperature (Experimental) [°F]

Section B: Heater Temperature (LEWICE) [°F]

Typical Temperature Progression

Variability of Results

absolute difference =
$$\left|T_{\rm exp} - T_{\rm LEW}\right|$$

percent difference = $\left|T_{\rm exp} - T_{\rm LEW}\right|/(T_{\rm exp_{max}} - T_{\rm exp_{min}})$

	% Error	Estimated	Avg. % I Deiffremence	Avg. Abso Difference	Avg. % Diffe	Avg. Absolut Diffærence
Mode	Experime	n E xperime	nExpert Us	€ xpert Us	e mtrained Us	sentrained Us
De-Icing	9%	3°F	18%	6°F	35%	11 °F
Anti-Icing	22%	8°F	45%	16 °F	89%	31 °F
Overall	13%	6°F	26%	13 °F	51%	25 °F

Quantitative Results

	Laminar,		Laminar,		Turbulent,	
	Sectional S	hed	Nodal Shed		Sectional Shed	
	Avg. %	Avg.	Avg. %	Avg.	Avg. %	Avg.
	Difference	Absolute	Difference	Absolute	Difference	Absolute
		Difference		Difference		Difference
Overall	8.6°F	25.7%	9.2°F	29.6%	8.8°F	27.2%
Deicing						
20°F Cases	6.5°F	26.3%	7.3°F	29.6%	5.9°F	22.4%
0°F Cases	11.9°F	24.5%	12.2°F	29.6%	13.2°F	29.0%
Evap. Anti-	35°F	22.7%	55°F	35.6%	88.6°F	56.0%
Icing						
Running Wet	22.2°F	38.0%	25.6°F	44.2%	33.4°F	53.9%

Ice Shape Results

- Preliminary Validation of Ice Shape Characteristics
 - All cases ran using automated process (not validated)
- Insignificant Difference for Most Cases
 - All average parameters within 2% of LEWICE 2.0 results
 - Majority of parameters < 1%difference from LEWICE 2.0

Conclusions

- Bleed Air and Electrothermal Capabilities Available
- Electrothermal Validation Performed
 - Reasonable (25%) accuracy for deicing or anti-icing applications
 - Code results can be calibrated if desired
- Additional Data Needed
 - Bleed air anti-icers
 - Investigate evaporative physics to improve accuracy

